Список литературы к статье «Рекомендации по дневному, вечернему и ночному освещению помещений для наилучшего поддержания физиологии, сна и бодрствования у здоровых взрослых»


  1. Paul S., Brown T. Direct effects of the light environment on daily neuroendocrine control // 2019. Vol. 243.
  2. Souman J. L., Tinga A. M., Te Pas S. F., van Ee R., Vlaskamp B. N. S. Acute alerting effects of light: A systematic literature review // Behav Brain Res. 2018. Vol.
  3. Santhi N., Ball D. M. Applications in sleep: How light affects sleep // Prog. Brain Res. 2020. Vol. 253.
  4. Fisk A. S., Tam S. K. E, Brown L. A., Vyazovskiy V. V., Bannerman D. M., Peirson S. N. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal Front Neurol 2018;9:56. Epub 2018/02/09.
  5. Penders T. M., Stanciu C. N., Schoemann A. M., Ninan P. T., Bloch R., Saeed S. Bright Light Therapy as Augmentation of Pharmacotherapy for Treatment of Depression A Systematic Review and Meta-Analysis. Prim Care Companion CNS Disord. 2016;18(5).
  6. Perera S., Eisen R., Bhatt M., Bhatnagar N., de Souza R., Thabane L., et al. Light therapy for non-seasonal depression: systematic review and meta-analysis. BJPsych Open. 2016;2(2):116–26.
  7. Duffy J. F., Abbott S. M., Burgess H. J., Crowley S. J., Emens J. S., Epstein L.J. et al. Workshop report. Circadian rhythm sleep-wake disorders: gaps and opportunities. 2021;44(5).
  8. Stevens R. G., Brainard G. C., Blask D. E., Lockley S. W., Motta M. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014;64(3):207–18.
  9. Ritchie H. K., Stothard E. R, Wright KP. Entrainment of the Human Circadian Clock to the Light-Dark Cycle and its Impact on Patients in the ICU and Nursing Home Settings. Curr Pharm Des. 2015;21(24):3438–42.
  10. Lunn R. M., Blask D. E., Coogan A. N., Figueiro M. G., Gorman M. R., Hall J. E. et al. Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ. 2017;607–608:1073–84.
  11. Mason I. C., Boubekri M., Figueiro M. G., Hasler B. P., Hattar S., Hill S. M. et al. Circadian Health and Light: A Report on the National Heart, Lung, and Blood Institute’s Workshop. J Biol Rhythm. 2018;33(5):451–7.
  12. Boyce P. Light, lighting and human health. Light Res Technol 2021;EPUB.
  13. Chellappa S. L., Vujovic N., Williams J. S., Scheer F. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab. 2019;30(10):767–79.
  14. Parameswaran G., Ray D. Sleep, circadian rhythms, and type 2 diabetes mellitus. Clin Endocrinol. 2021.
  15. Czeisler C. A., Shanahan T. L., Klerman E. B., Martens H., Brotman D. J., Emens J. S. et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11.
  16. Klerman E. B., Shanahan T. L., Brotman D. J., Rimmer D. W., Emens J. S., Rizzo J. F. III et al. Photic resetting of the human circadian pacemaker in the absence of conscious vision. J Biol Rhythm. 2002;17(6):548–55.
  17. Hull J. T., Czeisler C. A., Lockley S. Suppression of Melatonin Secretion in Totally Visually Blind People by Ocular Exposure to White Light: Clinical Characteristics. Ophthalmology. 2018;125(8):1160–71.
  18. Freedman M. S., Lucas R. J., Soni B., von Schantz M., Munoz M., David-Gray Z. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. 1999;284(5413):502–4.
  19. Lucas R. J., Freedman M. S., Munoz M., Garcia-Fernandez J. M., Foster R. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284(5413):505–7.
  20. Lucas R. J., Douglas R. H., Foster R. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4(6):621–6.
  21. Berson D. M., Dunn F. A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. 2002;295(5557):1070–3.
  22. Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.
  23. Zaidi F. H., Hull J. T., Peirson S. N., Wulff K., Aeschbach D., Gooley J. J. et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007;17(24):2122–8.
  24. Guler A. D., Ecker J. L., Lall G. S., Haq S., Altimus C. M., Liao H. W. et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. 2008;453(7191):102–5.
  25. Gooley J. J., Ho Mien I., St Hilaire M. A., Yeo S. C., Chua E. C., van Reen E. et al. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci. 2012;32(41):14242–53.
  26. Do M. T. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron. 2019;104(2):205–26.
  27. Bailes H. J., Lucas R. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc Biol Sci Roy Soc. 2013;280(1759):20122987.
  28. Lucas R. J., Peirson S. N., Berson D. M , Brown T. M., Cooper H. M., Czeisler C. A. et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37(1):1–9.
  29. Vandewalle G., Collignon O., Hull J. T., Daneault V., Albouy G., Lepore F. et al. Blue light stimulates cognitive brain activity in visually blind individuals. J Cogn Neurosci. 2013;25(12):2072–85.
  30. Gooley J. J., Rajaratnam S. M., Brainard G. C., Kronauer R. E., Czeisler C. A., Lockley S. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2010;2(31):31ra3.
  31. Chang A. M., Scheer F. A., Czeisler C. The human circadian system adapts to prior photic history. J Physiol. 2011;589(Pt 5):1095–102.
  32. Zeitzer J. M., Friedman L., Yesavage J. Effectiveness of evening phototherapy for insomnia is reduced by bright daytime light exposure. Sleep Med. 2011;12(8):805–7.
  33. Te Kulve M., Schlangen L. J. M., van Marken Lichtenbelt W. Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Sci Rep. 2019;9(1):16064.
  34. S 026/E:2018. CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light. Vienna: CIE Central Bureau; 2018. www.doi.org/10.25039/S026.2018
  35. Spitschan M. Photoreceptor inputs to pupil control. J Vis. 2019;19(9):5.
  36. Nowozin C., Wahnschaffe A., Rodenbeck A., de Zeeuw J., Hadel S., Kozakov R. et al. Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness. Curr Alzheimer Res. 2017;14(10):1042–52.
  37. Prayag A. S., Najjar R. P., Gronfier C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J Pineal Res. 2019;66(4):e12562.
  38. Brown T. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J Pineal Res. 2020;69(1):e12655.
  39. Gimenez M., Schlangen L., Lang D., Beersma D. G., Novotny P., Plischke H. et al. D3.7 Report on metric to quantify biological light exposure doses: Accelerate SSL Innovation For Europe,
  40. Allen A. E., Hazelhoff E. M., Martial F. P., Cajochen C., Lucas R. Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance. Sleep. 2018;41(8).
  41. Souman J. L., Borra T., de Goijer I., Schlangen L. J. M., Vlaskamp B. N. S., Lucassen M. Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature. J Biol Rhythm. 2018;33(4):420–31.
  42. Spitschan M., Lazar R., Yetik E., Cajochen C. No evidence for an S cone contribution to acute neuroendocrine and alerting responses to light. Curr Biol. 2019;29(24):R1297–R8.
  43. de Zeeuw J., Papakonstantinou A., Nowozin C., Stotz S., Zaleska M., Hadel S. et al. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime. J Biol Rhythm. 2019;34(4):410–31.
  44. S 026 a-oic toolbox. Vienna: CIE Central Bureau, 2020. www.doi.org/10.25039/S026.2018
  45. Spitschan M., Mead J., Roos C., Lowis C., Griffiths B., Mucur P. et al. luox: novel open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res. 2021;6:69.
  46. Brown T. M., Brainard G. C., Cajochen C., Czeisler C. A., Hanifin J. P., Lockley S. W. et al. Recommendations for Healthy Daytime, Evening, and Night-Time Indoor Light Exposure. preprints.
  47. ANSI/IES. RP-27-20. Eecommended Practice: Photobiological safety for lighting systems: Illuminating Engineering Society; 2020.
  48. International Commission on Non-Ionizing Radiation P. Light-Emitting Diodes (LEDS): Implications for Safety. Health Phys. 2020;118(5):549–61.
  49. SPEC 67600:2013-4 Biologically effective illumination — Design guidelines Deutsches Institut für Normung; 2013.
  50. ANSI/IES. RP-28-16. Lighting And The Visual Environment For Seniors And The Low Vision Population: Illuminating Engineering Society; 2016.
  51. EN 12464-1. Light and Lighting — Lighting of work places – Part1: Indoor work places: Comité Européen de Normalisation; 2021.
  52. Schlangen LJM, Price LLA. The Lighting Environment, Its Metrology, and Non-visual Responses. Front Neurol. 2021;12:624861.
  53. Münch M., Wirz-Justice A., Brown S. A., Kantermann T., Martinv K., Stefani O. et al. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks & Sleep. 2020;2:61–85.
  54. Mills P. R., Tomkins S. C., Schlangen L. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J Circadian Rhythms. 2007;5:2
  55. Viola A. U., James L. M., Schlangen L. J., Dijk D. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health. 2008;34(4):297–306.
  56. Boubekri M., Lee J., MacNaughton P., Woo M., Schuyler L., Tinianov B. et al. The Impact of Optimized Daylight and Views on the Sleep Duration and Cognitive Performance of Office Workers. Int J Environ Res Public Health. 2020;17(9).
  57. Stefani O., Cajochen C. Should We Re-think Regulations and Standards for Lighting at Workplaces? A Practice Review on Existing Lighting Recommendations. Front Psych. 2021;12:652161.
  58. PS-12-19: IES Position On UL RP 24480 Regarding Light and Circadian Entrainment. New York: Illuminating Engineering Society, 2020.
  59. CIE Position Statement on Non-Visual Effects of Light: Reccommending Proper Light at the Proper Time, 2nd ed. Vienna, CIE Cenral Bureau, 2019.
  60. Houser K. W., Boyce P. R., Zeitzer J. M., Herf M. Human-centric lighting: Myth, magic or metaphor? Light Res Technol. 2021;53:97–118.
  61. Soler R., Voss E. Biologically Relevant Lighting: An Industry Perspective. Front Neurosci. 2021;15:637221.
  62. Safranek S., Collier J. M., Wilkerson A., Davis R. Energy impact of human health and wellness lighting recommendations for office and classroom applications. Energy & Buildings. 2020;110365.
  63. Geerdinck L., Van Gheluwe J., Vissenberg M. Discomfort glare perception of non-uniform light sources in an office setting. J Environ Psychol. 2014;39:5–13.
  64. Vetter C., Pattison P. M., Houser K., Herf M., Phillips A. J. K., Wright K. P. et al. A Review of Human Physiological Responses to Light: Implications for the Development of Integrative Lighting Solutions. Leukos 2021;EPUB.
  65. Zandi B., Stefani O., Herzog A., Schlangen L. J. M., Trinh Q. V., Khanh T. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual appearance. Sci Rep. 2021;11(1):23188.
  66. Pattison P. M., Tsao J. Y., Brainard G. C., Bugbee B. LEDs for photons, physiology and food. 2018;563(7732):493–500.
  67. Obayashi K., Yamagami Y., Kurumatani N., Saeki K. Bedroom lighting environment and incident diabetes mellitus: a longitudinal study of the HEIJO-KYO cohort. Sleep Med. 2020;65:1–3. .
  68. Obayashi K., Yamagami Y., Kurumatani N., Saeki K. Pre-awake light exposure and sleep disturbances: findings from the HEIJO-KYO cohort. Sleep Med. 2019;54:121–5.
  69. Santhi N., Thorne H. C., van der Veen D. R., Johnsen S., Mills S. L., Hommes V. et al. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. J Pineal Res. 2012;53(1):47–59.
  70. Thorne H. C., Jones K. H., Peters S. P., Archer S. N., Dijk D. Daily and seasonal variation in the spectral composition of light exposure in humans. Chronobiol Int. 2009;26(5):854–66.
  71. Santhi N., Groeger J. A , Archer S. N., Gimenez M., Schlangen L. J., Dijk D. Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions. PLoS ONE. 2013;8(11):e79688.
  72. Van der Maren S., Moderie C., Duclos C., Paquet J., Daneault V., Dumont M. Daily Profiles of Light Exposure and Evening Use of Light-emitting Devices in Young Adults Complaining of a Delayed Sleep Schedule. J Biol Rhythm. 2018;33(2):192–202.
  73. Goulet G., Mongrain V., Desrosiers C., Paquet J., Dumont M. Daily light exposure in morning-type and evening-type individuals. J Biol Rhythm. 2007;22(2):151–8.
  74. Miller N., Kinzey B. Home Nighttime Light Exposures: How much are we really getting? Lighting Design + Application. 2018;1(July).
  75. Cain S. W., McGlashan E. M., Vidafar P., Mustafovska J., Curran S. P. N., Wang X., et al. Evening home lighting adversely impacts the circadian system and sleep. Sci Rep. 2020;10(1):19110.
  76. Koritala B. S. C., Cakmakli S. The human circadian clock from health to economics. Psychiatry J. 2018;7(4):176–96.
  77. Hafner M., Stepanek M., Taylor J., Troxel W. M., van Stolk C. Why sleep matters-the economic costs of insufficient sleep: A cross-country comparative analysis. Rand Health Q. 2016;6(11).
  78. Thapan K., Arendt J., Skene D. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261–7.
  79. Brown T. M , Thapan K., Arendt J., Revell V. L., Skene D. S-cone contribution to the acute melatonin suppression response in humans. J Pineal Res. 2021;71(1):e12719.
  80. Brainard G. C., Hanifin J. P., Greeson J. M., Byrne B., Glickman G., Gerner E. et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–12.
  81. Brainard G. C., Sliney D., Hanifin J. P., Glickman G., Byrne B., Greeson J. M. et al. Sensitivity of the human circadian system to short-wavelength (420-nm) light. J Biol Rhythm. 2008;23(5):379–86.
  82. Ruberg F. L., Skene D. J., Hanifin J. P., Rollag M. D., English J., Arendt J. et al. Melatonin regulation in humans with color vision deficiencies. J Clin Endocrinol Metab. 1996;81(8):2980–5.
  83. Wright H. R., Lack L. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18(5):801–8.
  84. Wright H. R., Lack L. C., Kennaway D. Differential effects of light wavelength in phase advancing the melatonin rhythm. J Pineal Res. 2004;36(2):140–4.
  85. Lok R., Smolders K., Beersma D. G. M., de Kort Y. A. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J Biol Rhythm. 2018;33(6):589–601.
  86. Cajochen C., Zeitzer J. M., Czeisler C. A., Dijk D. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav Brain Res. 2000;115(1):75–83.
  87. Vandewalle G., Balteau E., Phillips C., Degueldre C., Moreau V., Sterpenich V. et al. Daytime light exposure dynamically enhances brain responses. Curr Biol. 2006;16(16):1616–21.
  88. Phillips A. J. K., Vidafar P., Burns A. C., McGlashan E. M., Anderson C., Rajaratnam S. M. W. et al. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc Natl Acad Sci U S A. 2019;116(24):12019–24.
  89. Zeitzer J. M., Dijk D. J., Kronauer R., Brown E., Czeisler C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol. 2000;526(Pt 3):695–702.
  90. Cajochen C., Münch M., Kobialka S., Kräuchi K., Steiner R., Oelhafen P. et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab. 2005;90(3):1311–6.
  91. Lockley S. W., Evans E. E., Scheer F. A., Brainard G. C., Czeisler C. A., Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. 2006;29(2):161–8.
  92. Revell V. L., Barrett D. C., Schlangen L. J., Skene D. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function. Chronobiol Int. 2010;27(9–10):1762–77.
  93. Rahman S. A., Flynn-Evans E. E., Aeschbach D., Brainard G. C., Czeisler C. A., Lockley S. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep. 2014;37(2):271–81.
  94. Chellappa S. L., Steiner R., Blattner P., Oelhafen P., Gotz T., Cajochen C. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS ONE. 2011;6(1):e16429.
  95. Rahman S. A., St Hilaire M. A., Lockley S. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol Behav. 2017;177:221–9.
  96. Price LL, Lyachev A, Khazova M. Optical performance characterization of light-logging actigraphy dosimeters. J Opt Soc Am A Opt Image Sci Vis. 2017;34(4):545–57. pmid:28375324
  97. Spitschan M., Garbazza C., Kohl S., Cajochen C. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun 2021;3(3):fcab159.
  98. Chellappa S. L., Steiner R., Oelhafen P., Lang D., Götz T., Krebs J. et al. Acute exposure to evening blue-enriched light impacts on human sleep. J Sleep Res. 2013;22(5):573–80.
  99. Wright K. P. Jr., Gronfier C., Duffy J. F., Czeisler C. Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J Biol Rhythm. 2005;20(2):168–77.
  100. Munch M., Nowozin C., Regente J., Bes F., De Zeeuw J., Hadel S. et al. Blue-Enriched Morning Light as a Countermeasure to Light at the Wrong Time: Effects on Cognition, Sleepiness, Sleep, and Circadian Phase. 2016;74(4):207–18.
  101. Hebert M., Martin S. K., Lee C., Eastman C. The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res. 2002;33(4):198–203.
  102. Smith K. A., Schoen M. W., Czeisler C. Adaptation of human pineal melatonin suppression by recent photic history. J Clin Endocrinol Metab. 2004;89(7):3610–4.
  103. Chang A. M., Scheer F. A., Czeisler C. A., Aeschbach D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. 2013;36(8):1239–46.
  104. Jasser S. A., Hanifin J. P., Rollag M. D., Brainard G. Dim light adaptation attenuates acute melatonin suppression in humans. J Biol Rhythm. 2006;21(5):394–404.
  105. Khalsa SB, Jewett ME, Cajochen C, Czeisler CA. A phase response curve to single bright light pulses in human subjects. J Physiol. 2003;549(Pt 3):945–52.
  106. St Hilaire M. A., Gooley J. J., Khalsa S. B., Kronauer R. E., Czeisler C. A., Lockley S. Human phase response curve to a 1 h pulse of bright white light. J Physiol. 2012;590(13):3035–45.
  107. Stothard E. R., McHill A. W., Depner C. M., Birks B. R., Moehlman T. M., Ritchie H. K. et al. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr Biol. 2017;27(4):508–13.
  108. Wright K. P., McHill A. W., Birks B. R., Griffin B. R., Rusterholz .T, Chinoy E. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 2013;23(16):1554–8.
  109. de la Iglesia H. O., Fernandez-Duque E., Golombek D. A., Lanza N., Duffy J. F., Czeisler C. A. et al. Access to Electric Light Is Associated with Shorter Sleep Duration in a Traditionally Hunter-Gatherer Community. J Biol Rhythm. 2015;30(4):342–50.
  110. Moreno C. R., Vasconcelos S., Marqueze E. C., Lowden A., Middleton B., Fischer F. M. et al. Sleep patterns in Amazon rubber tappers with and without electric light at home. Sci Rep. 2015;5:14074.
  111. Schlangen L., Lang D., Novotny P., Plischke H., Smolders K., Beersma D. G. et al. Lighting for Health & Well-Being in Education, Work Places, Nursing Homes, Domestic Applications and Smart Cities: Accelerate SSL Innovation For Europe; 2014.
  112. Barkmann C., Wessolowski N., Schulte-Markwort M. Applicability and efficacy of variable light in schools. Physiol Behav. 2012;105(3):621–7.
  113. Mott M. S., Robinson D. H., Walden A., Burnette J., Rutherford A. Illuminating the Effects of Dynamic Lighting on Student Learning. SAGE Open. 2012;2:1–9.
  114. Sleegers P. J. C., Moolenaar N. M., Galetzka M., Pruyn A., Sarroukh B. E., van der Zande B. Lighting affects students’ concentration positively: Findings from three Dutch studies. Light Res Technol. 2013;45:159–75.
  115. Keis O., Helbig H., Streb J., Hille K. Influence of blue-enriched classroom lighting on students’ cognitive performance. Trends Neurosci Edu. 2014;3:86–92.
  116. Rautkyla E., Puolakka M., Tetri E., Halonen L. Effects of correlated colour Temperature and Timing of Light Exposure on Daytime Alertness in Lecture Environmnets. J Light Vis Environ. 2010;34:59–68.
  117. Riemersma-van der Lek R. F., Swaab D. F., Twisk J., Hol E. M., Hoogendijk W. J., Van Someren E. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA. 2008;299(22):2642–55.
  118. Figueiro M. G., Plitnick B. A., Lok A., Jones G. E., Higgins P., Hornick T. R. et al. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin Interv Aging. 2014;9:1527–37.
  119. Figueiro M. G., Plitnick B., Roohan C., Sahin L., Kalsher M., Rea M. Effects of a Tailored Lighting Intervention on Sleep Quality, Rest-Activity, Mood, and Behavior in Older Adults With Alzheimer Disease and Related Dementias: A Randomized Clinical Trial. J Clin Sleep Med. 2019;15(12):1757–67.
  120. Hopkins S., Morgan P. L., Schlangen L. J. M., Williams P., Skene D. J., Middleton B. Blue-Enriched Lighting for Older People Living in Care Homes: Effect on Activity, Actigraphic Sleep. Mood and Alertness Curr Alzheimer Res. 2017;14(10):1053–62.
  121. Vetter C., Juda M., Lang D., Wojtysiak A., Roenneberg T. Blue-enriched office light competes with natural light as a zeitgeber. Scand J Work Environ Health. 2011;37(5):437–45.
  122. Cho J. R., Joo E. Y., Koo D. L., Hong S. Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep Med. 2013;14(12):1422–5.
  123. Nagare R., Plitnick B., Figueiro M. Does the iPad Night Shift mode reduce melatonin suppression? Light Res Technol. 2019;51(3):373–83.
  124. Heath M., Sutherland C., Bartel K., Gradisar M., Williamson P., Lovato N. et al. Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents’ pre-bedtime alertness, sleep, and daytime functioning? Chronobiol Int. 2014;31(4):496–505.
  125. Cajochen C., Frey S., Anders D., Späti J., Bues M., Pross A. et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol (1985). 2011;110(5):1432–8.
  126. van der Lely S., Frey S., Garbazza C., Wirz-Justice A., Jenni O. G., Steiner R. et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health. 2015;56(1):113–9.
  127. Klerman E. B., Duffy J. F., Dijk D. J., Czeisler C. Circadian phase resetting in older people by ocular bright light exposure. J Investig Med. 2001;49(1):30–40.
  128. Sletten T. L., Revell V. L., Middleton B., Lederle K. A., Skene D. Age-related changes in acute and phase-advancing responses to monochromatic light. J Biol Rhythm. 2009;24(1):73–84.
  129. Crowley S. J., Cain S. W., Burns A. C., Acebo C., Carskadon M. Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty. J Clin Endocrinol Metab. 2015;100(11):4067–73.
  130. Gabel V., Reichert C. F., Maire M., Schmidt C., Schlangen L. J. M., Kolodyazhniy V. et al. Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness. Sci Rep. 2017;7(1):7620.
  131. Lee S. I., Matsumori K., Nishimura K., Nishimura Y., Ikeda Y., Eto T. et al. Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night. Physiol Rep. 2018;6(24):e13942.
  132. Najjar R. P., Chiquet C., Teikari P., Cornut P. L., Claustrat B., Denis P. et al. Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms? PLoS ONE. 2014;9(1):e85837.
  133. Abbott S. M., Malkani R. G., Zee P. Circadian disruption and human health: A bidirectional relationship. Eur J Neurosci. 2020;51(1):567–83.
  134. Price L. L. A., Udovicic L., Behrens T., van Drongelen A., Garde A. H., Hogenelst K. et al. Linking the non-visual effects of light exposure with occupational health. Int J Epidemiol. 2019;48(5):1393–7.
  135. Lowden A., Akerstedt T. Assessment of a new dynamic light regimen in a nuclear power control room without windows on quickly rotating shiftworkers—effects on health, wakefulness, and circadian alignment: a pilot study. Chronobiol Int 2012;29(5):641–9. pmid:
  136. Sletten T. L., Ftouni S., Nicholas C. L., Magee M., Grunstein R. R., Ferguson S. et al. Randomised controlled trial of the efficacy of a blue-enriched light intervention to improve alertness and performance in night shift workers. Occup Environ Med. 2017;74(11):792–801.
  137. Motamedzadeh M., Golmohammadi R., Kazemi R., Heidarimoghadam R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiol Behav. 2017;177:208–14.
  138. Sunde E., Pedersen T., Mrdalj J., Thun E., Gronli J., Harris A. et al. Blue-Enriched White Light Improves Performance but Not Subjective Alertness and Circadian Adaptation During Three Consecutive Simulated Night Shifts. Front Psychol. 2020;11:2172.
  139. Sherwin J.C. , Reacher M. H., Keogh R. H., Khawaja A. P., Mackey D. A., Foster P. J. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis // Ophthalmology. 2012. Vol. 119. No. 10.
  140. Cooney G. M., Dwan K., Greig C. A. , Lawlor D. A., Rimer J., Waugh F. R. et al. Exercise for depression // Cochrane Database Syst Rev. 2013. No. 9.ebb A. R. Who, what, where and when-influences on cutaneous vitamin D synthesis // Prog Biophys Mol Biol. 2006. Vol. 92. No. 1.
  141. 015:2018. Colorimetry 4th Edition. Vienna, CIE Central Bureau, 2018.
  142. Hanifin J. P., Lockley S. W., Cecil K., West K., Jablonski M., Warfield B. et al. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses // Physiol Behav. 2019. Vol. 198.
  143. Ho Mien I., Chua E. C., Lau P., Tan L. C., Lee I. T., Yeo S. C. et al. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction // PLoS ONE. 2014. Vol. 9. No. 5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *