Приборы для измерения оптических параметров и характеристик светодиодов
Необходимость оперативного и достоверного измерения основных световых и энергетических параметров и характеристик источников излучения в видимой области спектра, таких как координаты цветности, коррелированная цветовая температура, коэффициент пульсации, яркость, освещенность и облученность, очевидна. Она продиктована стремительным развитием альтернативных источников оптического излучения (светодиодов), появлением различных вариантов дисплеев и световых табло, а также технологическими процессами, использующими источники оптического излучения.
Некоторые особенности построения приборов для измерения основных световых характеристик источников света
Измерение освещенности и яркости является простой фотометрической процедурой. Вместе с тем при проектировании и производстве люксметров и яркомеров приходится сталкиваться с достаточно серьезными проблемами по обеспечению соответствия выпускаемых приборов требованиям нормативных документов.
Так, например, фотоприемные устройства (ФПУ), являясь основной частью прибора для измерения оптического излучения, должны отвечать ряду электрических и фотометрических требований, зависящих от области применения и назначения. При разработке и производстве приборов для измерения параметров излучения необходимо знание этих требований, их особенностей, трудностей создания и путей их преодоления.
Устройство для формирования пространственной характеристики (входное устройство) формирует угол зрения, величина которого определена назначением разрабатываемого прибора. Так, например, входное устройство люксметра или пульсметра рассчитывается исходя из следующих соображений.
Освещенность поверхности, создаваемая точечным источником излучения, произвольно расположенным под углом . к ее нормали (рис. 1), определяется выражением:
Е = Е0×сosβ, (1)
где Е0 — освещенность, создаваемая точечным источником, расположенным нормально относительно поверхности; β — угол между нормалью и направлением на источник.
Очевидно, измерения прибора, измеряющего освещенность, должен подчиняться такому же закону. Практически реализовать это условие без принятия определенных мер невозможно из-за зависимости коэффициента отражения поверхности оптических элементов приемной системы от угла падения излучения, описываемой формулой Френеля (2). Для выполнения этого условия приходится включать в оптическую схему фотоприемного устройства так называемую косинусную насадку, формирующую необходимый угол зрения и компенсирующую погрешность, вносимую поверхностным отражением оптических элементов.
Наиболее оптимальная косинусная насадка для рабочих средств (рис. 2) измерения оптического излучения представляет собой выполненный из молочного стекла элемент, равномерно рассеивающий падающее излучение по всем направлениям, обеспечивая тем самым выполнение закона Ламберта, согласно которому яркости светорассеивающей поверхности во всех направлениях одинаковы.
Поверхность материалов, используемых во входных устройствах, отражает падающее излучение по закону Френеля:
где φ1 — угол между падающим на поверхность лучом света и нормалью; φ2 — угол между преломленным лучом и нормалью. Графически эта зависимость представлена на рис. 3.
Это означает, что фотоприемное устройство регистрирует излучение, не отвечающее соотношению (1) при углах более 60°, т. е. отличное от реального излучения.
Для компенсации потерь отраженного излучения используют боковую грань диска из молочного стекла. Величина потока излучения, прошедшего внутрь стекла через боковые грани, пропорциональна величине цилиндрической освещенности. Под средней цилиндрической освещенностью понимают среднюю освещенность боковой поверхности вертикально расположенного цилиндра. Она определяется выражением:
где β — угол падения света от точечного источника на боковую поверхность вертикально расположенного цилиндра.
Световой поток Ф, попадающий на используемый в ФПУ светочувствительный элемент, является функцией отражения (ρ) и пропускания (τ) используемого материала, освещенности плоской поверхности (Еп) и цилиндрической освещенности боковой грани (Ец):
Аналитически описать эту связь достаточно сложно из-за разброса параметров используемых материалов и геометрических размеров составляющих ФПУ элементов. При разработке и изготовлении ФПУ эмпирически находится оптимальное сочетание характеристик (марки молочного стекла, его толщины и высоты боковой поверхности, выступающей над корпусом), обеспечивающее заданную погрешность (1–2%), определяемую отличием полученной пространственной характеристики от теоретической.
Кроме того, при создании приборов для измерения оптического излучения необходимо решить задачу приведения спектральной характеристики чувствительности кремниевого фотодиода к относительной световой спектральной эффективности V(λ), табулированные значения которой регламентированы решениями комиссии МКО и ГОСТ 8.332.
Спектральная коррекция чувствительности фотоприемника Sф(λ) к заданному виду S(λ) осуществляется, как правило, цветными фильтрами. При этом коэффициент пропускания Т(λ) определяется соотношением:
Существует два основных способа расположения корригирующих светофильтров перед фоточувствительным элементом (рис. 4).
В первом случае цветные фильтры с подходящими спектральными характеристиками располагаются последовательно друг за другом. При таком расположении (рис. 4а) излучение, прежде чем попасть на фотоприемник, последовательно фильтруется в каждом фильтре.
Другой способ расположения фильтров с требуемыми спектральными характеристиками показан на рис. 4б. При этом расположении, называемом схемой Дреслера, некоторые фильтры размещаются рядом один с другим. Различные части светового потока по-разному пропускаются фильтрами, прежде чем поток достигает приемной площадки фотоприемника. Результирующая кривая спектрального пропускания комбинации может эффективно регулироваться путем изменения относительного размера отдельных компонентов. Выполненные по такому принципу корректирующие фильтры могут с высокой степенью точности приблизить относительную спектральную чувствительность фотоприемника к идеальным значениям V(λ) при относительно высоком пропускании в максимумах кривых. Обычно на практике в частности и в расчете рассматриваемых приборов используется первый способ расположения светофильтров ввиду его технологичности и простоты расчетов.
Рассмотрим пример приведения спектральной характеристики кремниевого фотодиода Sф(λ) к относительной световой спектральной эффективности V(λ) (рис. 5).
Характеристика S(λ) приводится к заданной кривой с помощью исправляющего фильтра, который может быть составлен из цветных стекол (рис. 6).
Общий коэффициент пропускания исправляющего светофильтра рассчитывается по формуле:
где i — номера цветных стекол, составляющих светофильтр, кi(λ) — показатель поглощения цветных стекол с индексом, соответствующим номеру цветного стекла, ti — толщина соответствующих цветных стекол.
Тип стекол и их количество выбирались полуэмпирическим способом, исходя из наличия производимых и доступных для использования марок. Так, например, для видимой области спектра пригодными для коррекции оказались следующие цветные стекла: СЗС-21, СЗС-22, СЗС-23, ЖС-20, ЖЗС-5, ЖЗС-6, ОС-5. Из группы сине-зеленых стекол (СЗС) было выбрано СЗС-21, так как оно хорошо подавляет излучение в ближней ИК-области спектра (760–1200 нм), где наблюдается максимальная чувствительность кремниевых фотодиодов (λmax = 800–900 нм), выбранных для коррекции. Оранжевое стекло ОС-5 взаимозаменяемо со стеклом ЖС-20, а желто-зеленое стекло ЖЗС-6 взаимозаменяемо со стеклом ЖЗС-5.
Выбор марки стекол и их толщины и расчет спектрального коэффициента пропускания исправляющего светофильтра осуществляется таким образом, чтобы на каждой длине волны выполнялось условие: τ(λ)= V(λ)/Sф(λ).
Строгое выполнение этого условия на всех длинах волн для серийных цветных стекол и фотоприемников практически невозможно. Всегда будет иметь место отступление реально выполненной кривой S(λ) = Sa(λ)..(λ) от заданной, которое необходимо оценить в зависимости от назначения и способа градуировки фотометра, где применяется исправляющий светофильтр.
Оценка погрешности коррекции фотоприемника производится по методике, разработанной МКО (публикация № 53). Расчет погрешности коррекции фотометрической головки f1(Z) основан на отличии реакции на излучение идеального фотоприемника, табулированное значение спектральной чувствительности которого известно, и реального фотоприемника, относительное спектральное распределение которого отличается от того, при котором была произведена градуировка.
где S(λ) — относительная спектральная чувствительность исследуемого фотоприемника; SV(λ) — относительная спектральная чувствительность эталонного фотоприемника; Фa(λ) — относительное спектральное распределение источника «А», при котором производится градуировка; Фi(λ) — относительная спектральная характеристика табулированных источников.
Приборы для измерения оптического излучения
Люксметры нового поколения «ТКА-Люкс» (рис. 7) и «ТКА-ПКМ-31» являются в настоящее время самыми востребованными и имеют метрологические характеристики на уровне приборов лучших мировых производителей рабочих средств измерения. Диапазон измерения освещенности в диапазоне 10–200000 лк с погрешностью 6–8%.
«ТКА-Люкс/Эталон» является первым российским люксметром, метрологические характеристики которого отвечают требованиям, предъявляемым к рабочим эталонам. Он предназначен для измерения освещенности в видимой области спектра 380–760 нм, создаваемой стандартными источниками оптического излучения, расположенными нормально относительно приемника. Люксметр предназначен для практической реализации Государственной поверочной схемы средств из мерений световых величин в соответствии с ГОСТ 8.023-2000. Этот прибор по точности воспроизведения и передачи размеров единиц силы света и освещенности обеспечивает метрику прецизионных и рабочих средств измерений и отличается временной стабильностью и достоверностью. Допускаемая прибором основная относительная погрешность измерения освещенности не превышает 6,0%.
Разработанный комбинированный прибор люксметр+яркомер «ТКА-ПКМ» (02) служит для измерения освещенности (в диапазоне 10–200000 лк с погрешностью 8%) и яркости накладным способом (в диапазоне 10–200 000 кд/м2 с погрешностью 10%) самосветящихся протяженных объектов (рис. 8).
Прибор отличается от традиционных яркомеров отсутствием в схеме оптических элементов (линзы, объектива), что значительно упрощает конструкцию и удешевляет стоимость прибора при сохранении его точностных характеристик.
Для дистанционного определения яркости протяженных источников разработан недорогой, отвечающий современным метрологическим и техническим требованиям прибор для измерения яркости киноэкранов яркомер «ТКА-ЯР» (рис. 9), представляющий собой портативный малогабаритный прибор с автономным питанием, снабженный функцией запоминания результата измерения (Hold). Наводка на измеряемый объект осуществляется с помощью лазерного прицела.
Для упрощения конструкции прибора в оптической схеме был применен нефокусируемый объектив. Нерегулируемая фокусировка на некоторое постоянное расстояние повышает оперативность работы с прибором, так как исключается одна из рабочих операций. При этом не требуется вводить никаких поправок к градуировке, поскольку показания прибора пропорциональны яркости объекта независимо от расстояния. Прибор имеет следующие технические характеристики:
- угол зрения — 1,0–1,5°;
- диапазон измерения — 10,0–2000,0 кд/м2;
- спектральная коррекция — 2,0%;
- суммарная погрешность — 10,0%;
- расстояние до измеряемого объекта — не менее 7,0 м.
Измерение коэффициента пульсации источников излучения
Излучение источников света при питании от сети переменного тока (как правило, с частотой 50 Гц) является пульсирующим. Частота пульсации при этом равна удвоенной частоте питающего напряжения 100 Гц. В качестве критерия оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока источников излучения при питании их переменным током введен коэффициент пульсации освещенности (Кп), выражаемый формулой:
где Еmax — максимальное значение амплитуды переменой составляющей освещенности, Еmin — ее минимальное значение, Еср — среднее значение освещенности (рис. 10).
Конструктивно прибор выполнен в виде двух блоков: фотоприемной части (ФПУ) и блока обработки информации. В блоке обработки информации размещена электронная схема, состоящая из АЦП (аналого-цифрового преобразователя), ЖКИ (жидкокристаллического индикатора) и процессора ADuС.
Прибор работает следующим образом. Сигнал с ФПУ подается на предварительный усилитель, где происходит одновременно с усилением сигнала и его масштабирование.
Усиленный сигнал подается на вход АЦП для преобразования в цифровую форму. Цифровой сигнал с выхода АЦП подается в микропроцессор для дальнейшей обработки. Проводится серия измерений с периодом 10 мс и определяются максимальное, минимальное и среднее значения освещенности.
Обработка сигнала ведется не синфазно периодам колебаний. В процессе измерения производится анализ нескольких периодов, и значения результатов выборок усредняются. Результат — значения max, min и среднее определяются в единицах освещенности лк. После нахождения параметров сигнала по формуле (8) вычисляется значение коэффициента пульсации.
Определение коэффициента пульсации источников излучения и освещенности выполняется прибором «ТКА-ПКМ (08)», информация в нем обрабатывается микропроцессором. Этот пульсметр-люксметр имеет следующие технические характеристики:
- диапазон измерения коэффициента пульсации — 0–100%;
- диапазон измерения освещенности — 10–200 000 лк;
- погрешность измерения не превышает 10%.
Измерение полного светового потока
Важной световой характеристикой излучения светодиода является световой поток Ф (лм), определяющийся как интеграл всего потока излучения, заключенного под пространственной индикатрисой излучения (рис. 12).
Необходимо при этом отметить, что индикатрисы излучения светодиодов (в отличие от ламп накаливания) могут принимать самые причудливые формы. Эта особенность в немалой степени помогла в выборе нами пути построения измерительного прибора.
Способы измерения полного светового потока
Имеются два существенно различающихся способа измерения полного светового потока:
- гониометрический метод;
- метод «интегрирующей сферы».
Гониометрический метод
Метод основан на пошаговой фиксации значений силы света светодиода при его повороте на известный угол. Используемые для этих целей приборы — гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг несколько угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственного распределения.
На основании этих данных рассчитывается световой поток. Получение светового потока светодиода Ф с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nIv(Θ) при n→∞) и последующим вычислением среднего значения Ф:
Процесс измерения полного светового потока гониометрическим методом является перспективным с точки зрения точности и информативности, но требует серьезных материальных затрат и времени.
Для оперативного проведения простых технологических измерений полного светового потока нами был выбран так называемый метод «интегрирующей сферы», изложенный М. М. Гуревичем [6]. В нем неизвестный световой поток сопоставляется с заранее вычисленным световым потоком образцового осесимметричного источника. Этот метод позволяет проводить измерения светового потока источника с произвольным распределением излучения в окружающем пространстве на порядки быстрее, чем гониометрический метод (рис. 13).
Такое сопоставление производится с помощью фотометрического шара, имеющего достаточно большой диаметр, окрашенного изнутри матовой белой краской и рассеивающего свет в соответствии с законом Ламберта.
Теория фотометрического шара [6] показывает, что световой поток, рассеиваемый его внутренней стенкой, распределяется по ней весьма равномерно. Поэтому если внутрь полой сферы, стенка которой имеет во всех точках одинаковый коэффициент отражения ρ, поместить источник S, излучающий световой поток Ф, то отраженный от стенки шара поток ρФ создаст во всех точках одну и ту же освещенность
где r — радиус поверхности шара.
Вторично отраженный световой поток ρ2Ф снова равномерно распределится по стенке шара, и дополнительная освещенность окажется:
и так далее, до бесконечности.
Общую (суммарную) освещенность в некоторой точке М на внутренней поверхности шара можно рассчитать следующим образом:
где Eи — освещенность в некоторой точке М при непосредственном падении света на поверхность шара. Очевидно, что эта величина не будет одинакова во всех точках, поскольку зависит как от положения источника S внутри шара, так и от его светораспределения.
Однако если с помощью малого непрозрачного экрана Э (рис. 13), помещенного вовнутрь шара, защитить от попадания света непосредственно от источника малый участок стенки около точки М, то освещенность этого участка будет следующая:
где α — коэффициент пропорциональности, зависящий только от свойств шара.
Поэтому если испытуемый источник S со световым потоком Ф заменить внутри шара на образцовый источник S0 c известным световым потоком Ф0, то очевидно, что освещенность в точке М будет:
Или, разделив выражение (14) на (15), получим:
Установив тем или другим способом отношение освещенностей, можно определить световой поток Ф интересующего нас источника.
В связи с тем, что излучение светодиодов направленное, и угол излучения не превышает 2. возможно упрощение конструкции прибора за счет установки исследуемых светодиодов в стенке шара. Тем самым снижается количество элементов конструкции внутри шара и, следовательно, его геометрические размеры. Шар выполняется с двумя отверстиями. За первым размещается фотодиод с молочным стеклом и набором корригирующих светофильтров, а за вторым — исследуемые светодиоды (рис. 14).
Определив реакцию фотодиода на излучение — например, фототоки, возникающие в измерительной цепи, — находим отношение i/i0 и Е/Е0, которые можно считать равными между собой, и вычисляем световой поток Ф согласно выражению (16).
В результате реализации на практике вышеизложенного метода мы получили рабочее средство измерения полного потока, показанного на рис. 15. Погрешность измерения полного светового потока белых светодиодов составила 7,0%, цветных светодиодов — 10,0%.
Дополнительные погрешности суммарной спектральной коррекции, возникающие из-за селективности коэффициента отражения интегрирующей сферы, достаточно просто устраняются коррегирующими фильтрами. Измерения полного светового потока могут проводиться за считанные секунды операторами любого уровня квалификации (рис. 16).
Измерение цветовых характеристик источников оптического излучения
Общая концепция построения приборов
Приборы ООО «НТП «ТКА» для определения цветовых характеристик источников (спектроколориметры) основаны на измерении спектрального состава оптического излучения с последующей математической обработкой результатов.
Координаты цвета источников определяются значениями трех интегралов, взятых в пределах видимого спектра:
где Феλ(λ) — спектральная плотность потока излучения; x‾(λ),y‾(λ),z‾(λ) — удельные координаты цветности.
Координаты цветности рассчитываются:
Фотоприемное устройство спектроколориметра показано на рис. 16.
Излучение исследуемого источника, пройдя отделение для формирования пространственной характеристики (1), попадает в диспергирующее устройство. Устройство представляет собой полихроматор (2) с регистрацией разложенного излучения фотодиодной линейкой (3). Рабочий спектральный диапазон обусловлен характером поставленных задач.
При определении коррелированной цветовой температуры спектральная плотность энергетической светимости Меλ (Вт·м3) абсолютно черного тела (АЧТ) определяется в соответствии с законом Планка по формуле:
Координаты цвета АЧТ при данной температуре Т рассчитываются по формулам (17). Затем применяется переход от системы цветовых координат х, у МКО 1931 г. в более равноконтрастную систему u’, v’ МКО 1976 г. по следующим формулам:
Такой же пересчет цветности производится для исследуемого источника излучения. Затем определяется массив координат цветности АЧТ и соответствующий массив температур.
Минимальное расстояние в пространстве u, v между точкой цветности исследуемого источника (u0’, v0’) и точками цветности массива линии АЧТ (ui’, vi’) (рис. 17) определяется по формуле:
Затем сопоставляется рассчитанный массив цветности и массив температур АЧТ и определяется температура исследуемого источника Тj, соответствующая определенной точке цветности (uj, vj).
Разработанный спектроколориметр «ТКА-ВД» предназначен для определения спектрального состава источника оптического излучения с последующим вычислением цветовых координат в выбранной системе координат (рис. 18). Оптическая схема прибора представляет собой полихроматор на дифракционной решетке с регистрацией разложенного излучения фотодиодной линейкой. Рабочий спектральный диапазон прибора (380–760) нм. Диапазон линейности сигналов достигает шести порядков. В зависимости от конфигурации входного устройства прибор работает как в режиме яркомера, так и в режиме измерения освещенности. Спектральное разрешение прибора не превышает 3 нм.
Заключение
В заключение хочется отметить следующее. Прибор становится измерительным средством тогда, когда он метрологически обеспечен. Порой на метрологию затрачиваются усилия, соизмеримые с усилиями, затраченными на разработку самого прибора. ООО «НТП «ТКА» оснащено современным, в том числе уникальным оборудованием, которое обеспечивает проведение калибровочных и поверочных (силами «Тест-Санкт-Петербург») работ при выпуске приборов серии «ТКА». По каждому типу приборов имеется утвержденное метрологическое обеспечение измерений и эталоны соответствующего уровня, госповерка которых ежегодно проводится в уполномоченных организациях Госстандарта РФ. Специалистами центра проводятся консультации по вопросам возможности применения приборов для решения конкретных задач и даются рекомендации по наилучшему выбору среди них. По заданию министерств, ведомств и отдельных заказчиков выполняются научно-исследовательские и опытно-конструкторские работы, связанные как с разработкой новых типов приборов, так и с исследованиями воздействия физических факторов на материальные объекты и изучением происходящих в связи с этим изменений.
- www.ledcommunity.ru (Сайт объединения людей, сфера деятельности которых связана со светодиодной индустрией.) /ссылка утрачена/
- Заутер Г., Линдеманн М., Шперлинг А., Оно О. Фотометрия светодиодов // Светотехника. 2004. № 3.
- Никифоров С. Измерительная лаборатория для комплексного исследования характеристик светодиодов, применяемых в системах отображения информации // Компоненты и технологии. 2007. № 7.
- Круглов О. В., Кузьмин В. Н., Томский К. А. Измерение светового потока светодиодов // Светотехника. 2009. № 3.
- Сапожников Р. А. Теоретическая фотометрия. Л.: Энергия. 1977.
- Гуревич М. М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат. 1983.
- www.netl.doe.gov/ssl/PDFs/Portland_2008/Day1_Grather.pdf